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October 16, 2001 
 
Abstract 
 
The x-rays from inertial fusion energy micro explosions deposited in a thin film will lead 
to a temperature rise dependent on penetration depth and time duration. This temperature 
rise is important to the study of surface tension driven flows and the surface quality of 
films for optics. A one-dimensional heat transfer analysis is used to estimate the film 
temperature rise for several different cases applicable to both final optical surfaces and 
renewable liquid first walls. Attenuating gas mixtures of xenon and krypton are 
considered to mitigate the deposition of x-ray energy. 
 
Modeling 
 
The system is modeled as one-dimensional, transient heat transfer into a plane wall with 
prescribed boundary conditions and volumetric heat generation. The timescale of the 
photon energy deposition is much smaller than the convective timescale of the flow. As a 
result, the coolant is considered to be stationary during the heat transfer process. The 
curvature of the chamber is also neglected for the first wall case in order to simplify 
analysis. Film properties are dependent on temperature. 
 
Thermal Modeling 
 
The thermal diffusion equation for a plane wall analysis of a thin film is 
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 where T � temperature [K] 

k(T) � temperature dependent thermal conductivity [W/m�K] 

   �(T) � temperature dependent density [g/cm3] 

   cp(T) � temperature dependent specific heat [J/g�K] 

   q’’’(x) � spatially dependent volumetric heat generation* [W/cm3] 

   * Due to photon deposition 
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For the case of thermal properties dependent on temperature only, the one-dimensional 
thermal diffusion equation reduces to the following 
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Equation 2 is solved for the temperature throughout the film with an explicit numerical 
method in the heat transfer code (1).  Figure 1 gives a schematic of the problem and is 
applicable to the first wall of a chamber or an optical surface. Both boundary conditions 
were taken to be adiabatic. This is a valid assumption during the x-ray burst, � = 10�10-9 

seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given material properties and film geometry, only the volumetric heat generation term is 
needed to solve for the temperature of the film. The spatially dependent heat generation 
due to x-ray deposition is calculated with an energy deposition code (2). This energy 
deposition code takes into account material properties, film thickness/orientation, and 
characteristics of the incident x-ray flux (e.g spectrum, total energy, etc). 
 
Target Output Spectra Modeling 
 
The x-ray output energy from the target burn is given by an output spectrum (3). The 
target spectra used in this report are given in Figure 2. These spectra are for two different 
targets: 1) the heavy ion indirect-drive target, which might be similar to a laser indirect-
drive target and 2) the Naval Research Laboratory direct-drive target. The photons are 
assumed to arrive in a span of � = 10�10-9 seconds. During this span, the output spectrum 
is assumed constant. This assumption results in a spatially dependent volumetric heat 

z 

��

Figure 1: Plane wall analysis of thin film 
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generation that is constant with time. For a given spectrum and radius, the volumetric 
heat generation is then dependent on material and orientation angle (�). 

Figure 2: X-ray output spectra
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The three temperature blackbody fits for these spectra are given below by equation 3. 
Coefficients for each target are shown in Table 1. 
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Table 1:  Target blackbody coefficients 
 

 

 c1 T1 c2 T2 c3 T3 
NRL direct-drive 3.01�105 0.53 6.02�103 2.11 67.3 7.26 
HI indirect-drive 5.73�109 0.183 5.84�107 0.65 38.9 12.0 
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Energy Deposition Modeling 
 
The deposition model in this report is based on film material mean free paths. The 
following definitions are used in this section. 
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absorbed, and one of the atomic electrons is ejected from the atom (Edep = 1). When a 
photon interacts with an electron, however, it is scattered elastically, and the photon 
imparts a portion of its energy to the electron (Edep < 1). While these scattered 
photons are modeled in radiation transport calculations, such as those using the 
Monte Carlo method (e.g. TART (4)), they are neglected here. 

 
The equation for energy density as a function of penetration depth is given below. 
 

� �
� �

� �
� � � �

� �
� �� �

�
�
�

�
�
�

�
�

�
�

	

100

0.01 3dep2 m
JdT

T0.01
sinexp

TE
R4
TE

�

��

�

T
x

x
 

 
Figures 3 and 4 show the properties for the materials used in this report (4). 
 

Figure 3:  Mean free path vs. photon energy for selected materials
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Figure 4:  Edep correction factor vs. photon energy for selected materials
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Code Verification 
 
The energy deposition code was checked against results from the University of 
California, San Diego (5). The two results are shown below in Figure 5 for a lithium film 
exposed to the HI indirect-drive target at a distance of 6.5 m. The two results are in 
excellent agreement. 

Figure 5:  Energy density in a lithium film at 6.5 m
exposed to the HI indirect-drive target
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The one-dimensional heat transfer code was verified for the case of constant heat flux and 
constant material properties. The surface temperature results for a sodium film are shown 
in Figure 6. Again, the results are in excellent agreement. 
 

Figure 6: Surface temperature as a function of time for a sodium film exposed to a 
constant heat flux (q" = 5.E+6 W/cm2)
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Results 
 
The results contained in this report can be grouped into three categories: unprotected thin 
films, attenuating gas mixtures, and protected thin films. 
 
Unprotected films consider chambers with thin films on the first wall and GILMM’s 
without intervening gas protection. A general analysis was performed the effects of 
attenuating gas mixtures of krypton and xenon on energy deposition in thin films. 
Protected thin films refer to GILMM’s with a protective gas layer. 
 
A method for estimating the surface temperature rise of sodium GILMM’s at any 
distance and protective gas line density is also presented. This method couples results 
from the heat transfer and energy deposition codes. 
 
Unprotected Thin Films 
 
The unprotected thin films refer to those without the benefit of an attenuating gas. These 
include sacrificial first wall layers and unprotected GILMM’s. The NRL direct drive 
target and the HI indirect-drive targets were both examined. First wall films were 
exposed to the NRL target, and the GILMM films were exposed to the heavy ion indirect-
drive target. The x-ray output of the HI indirect-drive at a typical first wall scenario 
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quickly leads to temperatures above the film boiling point. Since the heat transfer code 
does not accurately model behavior past the boiling point, this case was not studied. The 
x-ray output of the NRL direct-drive target at optical distances did not lead to significant 
temperature rises. This case was also not studied. 
 
Chamber First Walls 
 
First walls were studied to determine the surface temperature variation due to x-ray 
heating along the chamber wall. This result might be of interest in the study of 
temperature driven surface tension gradient flows. Figure 7 shows the geometry 
investigated. The waist offset is defined as the vertical distance measured between the 
chamber waist radius and the point of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
The following terminology is defined for clarity. 
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Figure 7: Generic chamber geometry for 
first wall analysis 
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The results for flibe in a chamber with a chamber waist radius of 6 m are shown below. 
The chamber walls were exposed to the NRL target. Maximum surface temperature rise 
is at the chamber waist. The initial temperature of the flibe is 500	C. A cubic fit to the 
data is also given. 

Figure 8:  Flibe exposed to NRL direct-drive target
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Unprotected GILMM’s 
 
Temperature rises for lithium and sodium GILMM’s are presented below. The maximum 
surface temperature rise is shown as a function of orientation angle. Results are for 
exposure to the HI indirect-drive target at different distances. The highest surface 
temperature is always at � = 90	. (A typical GILMM angle might be � = 10	.) 

Figure 9:  Normalized surface temperature rise as a function of GILMM angle for 
lithium exposed to HI indirect-drive target
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Figure 10:  Normalized surface temperature rise as a function of GILMM angle for 
sodium exposed to HI indirect-drive target
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Attenuating Gas Mixtures 
 
The attenuating effectiveness of krypton-xenon gas mixtures was studied for the heavy 
ion indirect-drive target. Higher line densities result in lower surface energy densities, 
which in turn correspond to smaller surface temperature rises. The optimum mixture is 
dependent on the line density and film material. 
 
The following definitions are used in this section. 
 

� � ][cm1
][cmsectioncrossgas

fractionmixtureXe
length) protective mesdensity tinumber  (gas   ][cmdensitylinenL

2
KrXeeff

2

2

���

�

�������

�

��

�
�

 
 
The spectrum after it has passed through the attenuating gas, Eatten, is  
 

 
 

 
Surface X-ray Flux 
 
The surface x-ray flux at a given radius is 
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Figure 11 below gives the surface flux for different line densities and gas compositions. 
 

Figure 11:  Surface energy flux from HI indirect target at 30 m
vs. attenuating gas composition (Xe, Kr)
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Surface Energy Density 
 
The surface energy density, 
(x=0), is given by 
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The results for the materials under consideration in this study are summarized in the 
figures to follow. The materials considered are sodium, lithium, aluminum, and silicon 
dioxide (silica). All plots give the resultant surface energy densities from protected 
scenarios as well as the value of the unprotected case. Sodium was studied extensively as 
a leading GILMM candidate. 
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The plot for sodium indicates the surface energy density regime that leads to surface 
temperatures above the boiling point at STP. This limit is set conservatively for an 
orientation angle of � = 90	 (the 10	 limit is also shown). Note: Surface energy density is 
independent of orientation angle. 

Figure 12:  Surface energy density for sodium at 30 m
vs. attenuating gas composition (Xe, Kr)
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Figure 13:  Normalized surface energy density for sodium at 30 m
vs. attenuating gas composition (Xe, Kr)
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Next are the results for lithium. The gas mixtures have a greater attenuating effect, which 
is easily seen by comparing the normalized surface energy density graph with that of 
sodium. 

Figure 14:  Surface energy density for lithium at 30 m
vs. attenuating gas composition (Xe, Kr)
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Figure 15:  Normalized surface energy density for lithium at 30 m
vs. attenuating gas composition (Xe, Kr)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0% 20% 40% 60% 80% 100%
Xe %

N
or

m
al

iz
ed

 su
rf

ac
e

en
er

gy
 d

en
si

ty

1.0E+17
3.0E+17
5.0E+17
1.0E+18
2.0E+18

Line density [cm-2]

 
 
 
 
 
 
 



  

13 

The case of an aluminum optic is shown below. Higher line densities than those needed 
by lithium and sodium are required to have a significant attenuating effect. Again, the 
overall effectiveness of gas protection mixtures is most easily seen in the normalized 
graphs. 

Figure 16:  Surface energy density for aluminum at 30 m
vs. attenuating gas composition (Xe, Kr)
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Figure 17:  Normalized surface energy density for aluminum at 30 m
vs. attenuating gas composition (Xe, Kr)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0% 20% 40% 60% 80% 100%
Xe %

N
or

m
al

iz
ed

 su
rf

ac
e

en
er

gy
 d

en
si

ty

1.0E+17

3.0E+17

5.0E+17

1.0E+18

2.0E+18

Line density [cm-2]

 
 
 
 
 
 



  

14 

The response of silica is very similar to those of aluminum. This is to be expected since 
the mean free paths for photons are similar for the two materials. 

Figure 18:  Surface energy density for silica at 30 m
vs. attenuating gas composition (Xe, Kr)
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Figure 19:  Normalized surface energy density for silica at 30 m
vs. attenuating gas composition (Xe, Kr)
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Protected Thin Films 
 
Protected thin films have an attenuating gas layer to shield the material from the full 
brunt of the x-ray energy emitted by the target. This situation was considered because the 
heat transfer code does not consider phase change. With the exception of lithium, all the 
materials when exposed to the HI indirect-drive target at typical optical distances (R ~ 30 
m) experienced surface temperatures greater than their boiling or melting point, 
depending on the initial phase of the material. This limits the analysis to situations where 
the material under consideration must remain in its initial phase. To this end, attenuating 
gases were employed to lessen the x-ray energy “seen” by the film. This study does not 
account for reemission from the gas or any other higher order effects. 
 
Only sodium has been analyzed for the protected situation. The relationship between 
surface energy density and surface temperature rise is shown below for a gas line density 
of 3E+18 cm-2. This figure shows that temperature rise is strongly dependent on surface 
energy density. Also, temperature is only weakly dependent on gas mixture. 
 

Figure 20:  Surface temperature rise and energy density vs. Xe % at a line density of 
3.E+18 cm-2 for sodium at R=30 m and �=5o
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The surface temperature rise for unprotected sodium GILMM’s is plotted versus 
volumetric heat generation in Figure 21. Linear fits are also given. 

Figure 21:  Surface temperature rise as a function of surface energy density
for sodium films
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This result can be used to relate surface temperature rise to the previous data given in 
Figure 12. The case of a sodium GILMM at an orientation angle of 5	 and a line density 
of 3�108 cm-2 (same as Figure 20 with Xe % = 80%) is presented below. 
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The actual calculated surface temperature rise is 79 [K]. The estimate is off by 18%. The 
estimate improves for higher volumetric heat generation rates. The estimated temperature 
rise corresponding to a surface energy of 7E+8 [J/m3] is 302 [K]. The actual calculated 
result is 310 [K], or 3% higher than the estimate. 
 
Conclusions 
 
This work is the summary of numerical results of the two previously mentioned codes. 
These codes were extensively coupled for two different cases in this report. Sodium 
GILMM’s exposed to the heavy ion indirect target and flibe first walls exposed to the 
direct drive target are these cases.  Additional analyses using these models and the 
information presented here should be completed to more fully assess the implications for 
the operation of GILMM’s and wetted first walls. 
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The energy density code was used to obtain surface energy density results for GILMM 
and optical material candidates. These results are summarized in Figures 12-19. Using 
these results, a thermal analysis could be carried out for these materials. 
 
A more general result is given by the surface energy flux from the indirect target. This is 
the surface flux attenuated by a gas mixture of xenon and krypton. This result could be 
used in the analytical solution to obtain a first approximation for the surface temperature 
of a GILMM with gas protection. 
 
A method of estimating the surface temperature rise of a sodium GILMM exposed to the 
heavy ion indirect target is also given. This method is good for estimating the GILMM 
surface temperature at any distance and any gas protection.  
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